

living planet MILAN 13-17 May 2019

ESA UNCLASSIFIED - For Official Use

CGI

Operational crop monitoring in Africa using the Food Security TEP

Markus Muerth Vista GmbH

Bringing together Food Security and Big Data

The European EO Ecosystem: Space 4.0

("the agreed picture")

Supporting sustainable Food Production from Space

Access to key satellite products and ancillary data, backed up by a **scalable** Universities processing infrastructure

Interact with a range of users through a dedicated **forum**

App developers

Ability to easily develop new services, with the ability to share processors and outputs Service Providers only with selected user groups

New Business Model offer Start-Ups for private companies

Open expert interface

Food Security TEP Frontend

Access to **tools** to derive aquacultural products Researchers

Public Entities Technical **support** for platform use

Provision on request of highaccuracy, quality checked Int. Bodies vegetation parameters (LAI, fAPAR, etc), suitable for use Finance Ind. in operational scenarios.

Access to ready-to-use Ag & Aquac. Industry **products** or customized services Farmers

The Main User Interface

Tools on Food Security TEP

Run your scripts in parallel mode!

Food Security Data and Service Portfolio

Public processing services	Spatial res.
SNAP S-2 Band Ratio Processor	yes
SNAP S-2 Normalized Band Difference Processor	yes
SNAP S-2 Red Edge Position Index	yes
SNAP S-2 Modified Chlorophyll Absorption Ratio	yes
SNAP S-2 Brightness Index	yes
SNAP S-2 Generic Graph Processor	(beta)
Generic R Script Processor	(upcoming)
Sen2Cor	(beta)
(+ your contributions that you an share with others!)	

Parallel Processing Services	Public?
VISTA (Green) Leaf Area	(upcoming)
VISTA Reflectance at Bottom of Atmosphere	(upcoming)
VITO Fraction of APAR	(upcoming)
VITO Fraction of Vegetation Cover	(upcoming)
VITO Normalized Difference Vegetation Index	(upcoming)
VITO Leaf Area Index	(upcoming)
Higher level services (VITO, VISTA, Hatfield)	(upcoming)
(+ your services if you like to deploy your algorithm on the Food Security TEP and become an EO service provider on the platform!)	

Complementary data for analysis

Sessio

AI on Food Security TEP (2019-2021)

Copernicus

the most important
digital big data resource:

Volume – Velocity –
Variety – Veracity - Value

Data and Information Access Service (DIAS) platforms computing power close to the data

ESA thematic exploitation platforms:

virtual environments for user relevant EO data and applications advantage of available computing resources

Al & Deep Learning

deep neural network architectures architectures for satellite images large benchmark datasets cloud and GPU technologies

Applications / Use Cases:

- Food Security high resolution water availability maps for agricultural areas for irrigation support, for farmers.
- Polar high resolution ice maps for maritime safety for increasing traffic in critical polar environments

Pre-processed products

Food Security TEP Analyst View: Browser based visualization

Green leaf area of agricultural areas near Berlin, Germany showing the decrease of plant health during the summer drought 2018

Food Security TEP Service Pilots

Food Security TEP Customized is **demonstrated** in three **service pilots**.

Pilot 1 'Agriculture' (VISTA – VITO)

Central Europe & Southern Africa

Pilot 2 'Agriculture' (VITO – VISTA)

Kenya

Pilot 3 'Aquaculture' (Hatfield)

Tanzania

Service Pilot 2: Micro-credits

- Agriculture employs 2/3 of Africa's population and contributes 1/3 of its GDP. Yet only **1% of commercial loans** go to the agricultural sector, and very little of that reaches SHFs (**Small Holder Farmers**).
- > SHFs are often denied loans because they **lack credit profiles** and lenders have no efficient methods to assess the risks lending to SHFs.
- Additionally, lenders **lack visibility** (i.e. data) into SHFs' agri-businesses and use inflexible lending systems not applicable to the needs of SHFs.
- Lenders therefore either refrain from lending to SHFs or have a high effort which results in exorbitantly **high interest rates**.
- This results in a **agricultural funding gap** (\$450 billion globally) leaving farmers underserved and creating a hole in lenders' client base

FarmDrive's VP

FarmDrive provides tailored mobile loans to SHFs by using innovative credit assessment, data analytics and operational efficiencies. FarmDrive's goal is to efficiently drive capital to smallholder farmers.

Service Pilot 2: Micro-credits

Trial service to support improved access to credits for smallholder farms (ongoing):

- continuous monitoring of agricultural crops and soils with high resolution data at the regional scale adding weather and yield estimation data
- Supporting the local Kenyan SME FarmDrive by providing additional information

for their portfolio management

Focus on north-western Kenya,
 where most of FarmDrive's
 customers are located

Challenges of the approach

- The **dominant crops** of the Northern Rift region around Eldoret are maize, wheat, beans and potatoes
- There is a **variety of maize grown** by SHFs, most of them take up to 9 months to harvest, the main cropping period is from February to November
- ➤ Typically, **mixed cropping** on small fields (~0.1 ha) does not allow field-scale monitoring with Sentinel-2 data

FarmDrive Geolocation algorithm

SHFs can only be located by cell phone towers, so **no clear georeferencing** can be made. Thus, FarmDrive is working on their own geolocation algorithm based on school distances

Both Google Maps and farmer approximations follow a similar trend across 39 different primary schools, but farmers appear to walk faster than google Earth estimations

Monitoring the Water-Food-Energy Nexus

Food Security

Spatial resolution of S-2 now also allows monitoring of small holder farms.

Soil Quality / Degradation Mapping of organic content based on spectral features

Crop Growth Monitoring

Leaf Chlorophyll

Indicating nitrogen stress and yield losses

Irrigation Monitoring Soil Moisture Mapping

1 km

CGI

More on Food Security TEP during LPS19:

- ➤ Visit the **ESA Data Access Booth** anytime and/or meet us there on Thursday 11:00-13:00
- ➤ See our public **Food Security presentation** [EO4Society Area, Thursday 17:30-18:00]
- "Extreme Earth Extreme Data Analytics to Manage an Extremely Dynamic Planet" [AI and Data Analytics: Technologies and Applications, Thursday 14:45, Amber 7+8]

Visit us! https://foodsecurity-tep.net